15EC655

Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Microelectronics

Time: 3 hrs .
Max. Marks: 80

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Derive an expression for drain current of NMOS transistor operating in different regions.
(08 Marks)
b. Calculate the minimum value of V_{DS} needed for a $0.8 \mu \mathrm{~m}$ process technology for which $\mathrm{t}_{\mathrm{ox}}=15 \mathrm{~nm}, \mu_{\mathrm{n}}=550 \mathrm{~cm}^{2} / V$.S.
i) Find $C_{o x_{1}} K_{n}^{1}$
ii) Find the over drive voltage required to operate the transistor having (W/L) $=20$ in saturation with $I_{D}=0.2 \mathrm{~mA}$.
(08 Marks)

OR

2 a. Analyse the circuit in Fig.Q2(a) to determine all voltage and currents. Let :
$\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}^{1}\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)=1 \mathrm{~mA} / \mathrm{V}^{2}$.
(08 Marks)
b. Derive an expression for resistance between drain and source from the transfer characteristics.
(08 Marks)

Module-2

3 a. Derive an expression for MOSFET transconductance using small signal operation. (08 Marks)
b. Differentiate between small signal equivalent model and T-equivalent model of MOSFET.
(08 Marks)

OR

4 a. Derive an expression for $\mathrm{R}_{\text {in }}, \mathrm{R}_{0}$ gain for a grounded gate amplifier. Justify why it is called as current followers.
(08 Marks)
b. Briefly explain all the capacitances in MOSFET and draw its high frequency model.
(08 Marks)

15EC655

Module-3

5 a. Compare MOSFET and BJT based on the following parameters.
i) Current - voltage equation
ii) Hybrid- π model
iii) Transition frequency
iv) Gain.
(08 Marks)
b. Draw the MOSFET constant current source and explain its operation.
c. For $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{I}_{\text {ref }}=100 \mu \mathrm{~A}$ design a constant current source if Q_{1} and Q_{2} are matched and have a channel length of $1 \mu \mathrm{~m}$, channel width of $10 \mu \mathrm{~m}, \mathrm{~V}_{\mathrm{t}}=0.7 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}^{1}=200 \mu \mathrm{~A} . \mathrm{V}^{2}$.
(04 Marks)

OR

a. Explain MOS current steering circuits with relevant current-voltage equations.
(08 Marks)
b. Find the value of Z for the circuit shown in Fig.Q6(b) using Miller equivalent circuit when Z is : i) $1-\mathrm{M} \Omega$ resistance ii) $1-\mathrm{pF}$ capacitance.

Fig.Q6(b)
(08 Marks)

Module-4

7 a. Derive the 3-dB frequency expression for a common source amplifier.
(08 Marks)
b. A CMOS common source amplifier has $\mathrm{W} / \mathrm{L}=\frac{7.2 \mu \mathrm{~m}}{0.36 \mu \mathrm{~m}}$ for all transistors,
$\mu_{\mathrm{n}} \mathrm{Co}_{\mathrm{x}}=387 \mu \mathrm{~A} / \mathrm{y}^{2}, \mu_{\mathrm{p}} \mathrm{Co}_{\mathrm{x}}=86 \mu \mathrm{~A} / \mathrm{v}^{2}, \mathrm{I}_{\text {ref }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{A}}=5 \mathrm{~V} / \mu \mathrm{m}, \mathrm{C}_{\mathrm{gs}}=20 \mathrm{fF}, \mathrm{C}_{\mathrm{gd}}=5 \mathrm{fF}$, $\mathrm{C}_{\mathrm{L}}=25 \mathrm{fF}, \mathrm{R}_{\text {sigg }}=10 \mathrm{~K} \Omega$, determine F_{H}.

OR

8 a. Explain an active loaded common gate amplifier and derive for its $R_{i n}, R_{0}$, gain.
(08 Marks)
b. Estimate $\mathrm{A}_{\mathrm{vo}}, \mathrm{R}_{\mathrm{in}}, \mathrm{R}_{0}, \mathrm{G}_{\mathrm{y}}, \mathrm{F}_{\mathrm{H}}$ for a common gate amplifier with $(\mathrm{W} / \mathrm{L})=\frac{7.2 \mu \mathrm{~m}}{0.36 \mu \mathrm{~m}}$, $\mu_{\mathrm{nC}}^{\mathrm{ox}} \mathrm{=}=387 \mu \mathrm{~A} / \mathrm{v}^{2}, \mathrm{r}_{0}=18 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~g}_{\mathrm{m}}=1.25 \mathrm{~mA} / \mathrm{v}, \mathrm{X}=0.2, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{gs}}=20 \mathrm{fF}, \mathrm{C}_{\mathrm{gd}}=5 \mathrm{fF}, \mathrm{C}_{\mathrm{L}}=0$.
(08 Marks)

Module-5

9 a. Explain the MOS differential pair operation with common mode and differential input voltage.
(08 Marks)
b. Explain the effect of R_{D} and g_{m} mismatch on CMRR.

OR

10 a. Determine the differential gain of an active loaded MOS pair.
(08 Marks)
b. With a neat circuit diagram, explain the operation of two stage CMOS opamp configuration.
(08 Marks)

