

Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Microelectronics

Time: 3 hrs.

1

Max. Marks: 80

(08 Marks)

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

- Derive an expression for drain current of NMOS transistor operating in different regions. a.
 - Calculate the minimum value of V_{DS} needed for a 0.8µm process technology for which b. $t_{ox} = 15$ nm, $\mu_n = 550$ cm²/V.S. i) Find $C_{ox_1} K_n^1$
 - ii) Find the over drive voltage required to operate the transistor having (W/L) = 20 in saturation with $I_D = 0.2 \text{mA}$. (08 Marks)

OR

10M

- Analyse the circuit in Fig.Q2(a) to determine all voltage and currents. Let : 2 a.
 - $V_{t} = 1V, K_{n}^{1}$ = 1mA/v²

Fig.Q2(a)

(08 Marks) Derive an expression for resistance between drain and source from the transfer (08 Marks)

Module-2

- Derive an expression for MOSFET transconductance using small signal operation. (08 Marks) 3 a. Differentiate between small signal equivalent model and T-equivalent model of MOSFET.
 - (08 Marks)

OR

- 4 Derive an expression for R_{in}, R₀ gain for a grounded gate amplifier. Justify why it is called a. as current followers. (08 Marks)
 - b. Briefly explain all the capacitances in MOSFET and draw its high frequency model.

b.

b.

characteristics

15EC655

Module-3

- Compare MOSFET and BJT based on the following parameters. 5 a.
 - Current voltage equation i)
 - ii) Hybrid- π model
 - iii) Transition frequency
 - iv) Gain.
 - b. Draw the MOSFET constant current source and explain its operation. (04 Marks)
 - c. For $V_{DD} = 3V$, $I_{ref} = 100 \mu A$ design a constant current source if Q_1 and Q_2 are matched and have a channel length of 1 μ m, channel width of 10 μ m, V_t = 0.7V, K¹_n = 200 μ A.V².

(04 Marks)

(08 Marks)

OR

- Explain MOS current steering circuits with relevant current-voltage equations. 6 (08 Marks)
 - b. Find the value of Z for the circuit shown in Fig.Q6(b) using Miller equivalent circuit when Z is : i) $1 - M\Omega$ resistance ii) 1 - pF capacitance.

Module-4

Fig.Q6(b)

Derive the 3-dB frequency expression for a common source amplifier. 7 a. (08 Marks)

b. A CMOS common source amplifier has $W_L = \frac{7.2 \mu m}{0.36 \mu m}$ for all transistors,

 $\mu_n Co_x = 387\mu A/v^2$, $\mu_p Co_x = 86\mu A/v^2$, $I_{ref} = 100\mu A$, $V_A = 5V/\mu m$, $C_{gs} = 20$ fF, $C_{gd} = 5$ fF, $C_L = 25$ fF, $R_{sig} = 10$ K Ω , determine F_H . (08 Marks)

OR

a. Explain an active loaded common gate amplifier and derive for its R_{in}, R₀, gain. 8 (08 Marks) b. Estimate A_{vo}, R_{in}, R₀, G_v, F_H for a common gate amplifier with $\left(\frac{W}{L}\right) = \frac{7.2 \mu m}{0.36 \mu m}$,

 $\mu nC_{ox} = 387\mu A/v^2$, $r_0 = 18k\Omega$, $I_D = 100\mu A$, $g_m = 1.25mA/v$, X = 0.2, $R_s = 10k\Omega$, $R_L = 100k\Omega, C_{gs} = 20fF, C_{gd} = 5fF, C_L = 0.$ (08 Marks)

- <u>Module-5</u> Explain the MOS differential pair operation with common mode and differential input 9 a. voltage. (08 Marks) (08 Marks)
 - b. Explain the effect of R_D and g_m mismatch on CMRR.

OR

Determine the differential gain of an active loaded MOS pair. 10 a. (08 Marks) With a neat circuit diagram, explain the operation of two stage CMOS opamp configuration. b. (08 Marks)

2 of 2